A Particle-Partition of Unity Method for the Solution of Elliptic, Parabolic, and Hyperbolic PDEs

نویسندگان

  • Michael Griebel
  • Marc Alexander Schweitzer
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE COMPARISON OF EFFICIENT RADIAL BASIS FUNCTIONS COLLOCATION METHODS FOR NUMERICAL SOLUTION OF THE PARABOLIC PDE’S

In this paper, we apply the compare the collocation methods of meshfree RBF over differential equation containing partial derivation of one dimension time dependent with a compound boundary nonlocal condition.

متن کامل

Convergence of a Monte Carlo Method for Fully Non-linear Elliptic and Parabolic Pdes in Some General Domains

In this paper, we introduce a probabilistic numerical scheme for a class of parabolic and elliptic fully non-linear PDEs in bounded domains. In the main result, we provide the convergence of a discrete-time approximation to the viscosity solution of a fully non-linear parabolic equation by assuming that comparison principle holds for the PDE.

متن کامل

Analytic solutions for the Stephen's inverse problem with local boundary conditions including Elliptic and hyperbolic equations

In this paper, two inverse problems of Stephen kind with local (Dirichlet) boundary conditions are investigated. In the first problem only a part of boundary is unknown and in the second problem, the whole of boundary is unknown. For the both of problems, at first, analytic expressions for unknown boundary are presented, then by using these analytic expressions for unknown boundaries and bounda...

متن کامل

An exact solution to determination of an open orbit

We present an exact solution of the equations for orbit determination of a two body system in a hyperbolic or parabolic motion. In solving this problem, we extend the method employed by Asada, Akasaka and Kasai (AAK) for a binary system in an elliptic orbit. The solutions applicable to each of elliptic, hyperbolic and parabolic ∗Email: [email protected]

متن کامل

A Globally Convergent Numerical Method for Some Coefficient Inverse Problems with Resulting Second Order Elliptic Equations

A new globally convergent numerical method is developed for some multidimensional Coefficient Inverse Problems for hyperbolic and parabolic PDEs with applications in acoustics, electromagnetics and optical medical imaging. On each iterative step the Dirichlet boundary value problem for a second order elliptic equation is solved. The global convergence is rigorously proven and numerical experime...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2000